Конвертерные процессы с донным воздушным дутьем

Первым способом массового производства жидкой стали был бессемеровский процесс (в конвертере с кислой футеровкой), предложенный и разработанный англичанином Г. Бессемером в 1856—1860 гг.; несколько позже — в 1878 г. — С.Томасом был разработан схожий процесс в конвертере с основной футеровкой (томасовский процесс).
Возникновение бессемеровского процесса имело исключительно важное значение для развития техники, поскольку до его появления не существовало способов производства литой стали в больших количествах, а применявшиеся в то время пудлинговый процесс получения железа в тестообразном состоянии и тигельный процесс получения жидкой стали в тиглях емкостью менее 50 кг не могли удовлетворить потребности развивающегося машиностроения.

Сущность конвертерных процессов на воздушном дутье (бессемеровского и томасовского) заключается в том, что залитый в плавильный агрегат (конвертер) чугун продувают снизу воздухом; кислород воздуха окисляет примеси чугуна, в результате чего он превращается в сталь; при томасовском процессе, кроме того, в основной шлак удаляются фосфор и сера. Тепло, выделяющееся при окислении, обеспечивает нагрев стали до температуры выпуска (~ 1600 °С).

Устройство конвертера.

Бессемеровский и томасовский конвертеры представляют собой сосуд грушевидной формы, выполненный из стального листа с футеровкой изнутри. Футеровка бессемеровского конвертера кислая (динасовый кирпич), томасовского — основная (смолодоломит).
Сверху в суживающейся части конвертера — горловине — имеется отверстие, служащее для заливки чугуна и выпуска стали. Снизу к кожуху крепится отъемное днище с воздушной коробкой. Дутье, подаваемое в воздушную коробку, поступает в полость конвертера через фурмы (сквозные отверстия), имеющиеся в футеровке днища. Дутьем служит воздух, подаваемый под давлением 0,30—0,35 МПа. Цилиндрическая часть конвертера охвачена опорным кольцом; к нему крепятся цапфы, на которых конвертер поворачивается вокруг горизонтальной оси.

Стойкость днища бессемеровского конвертера составляет 15—25 плавок, томасовского 50—100 плавок, после чего их заменяют. Стойкость остальной футеровки выше: у томасовского конвертера 250—400 плавок, у бессемеровского 1300— 2000 плавок.

Плавка в бессемеровском конвертере

В конвертер заливают бессемеровский чугун (0,7—1,25 % Si; 0,5-0,8 % Мп; 3,8-4,4 % С;

Общая длительность плавки составляет 20—30 мин; по-скольку шлак кислый (55—65 % SiO2;       15—25 % FeO;    15—20 % МпО), при плавке не удаляются сера и фосфор.

Плавка в томасовском конвертере

В конвертер для образования основного шлака загружают известь (12—18 % от массы металла), заливают томасовский чугун (1,6-2,0 % Р;    0,2-0,6 % Si;    0,8-1,3 % Mn;     Продувку заканчивают, когда содержание фосфора в ме¬талле снизится до 0,05—0,07 %, после чего металл выпускают в ковш, куда вводят раскислители.
Общая длительность плавки составляет 25—40 мин. Состав конечного шлака: 16—24 % Р2O5, 42—45 % СаО,    5—10 % SiO2,      8—15 % FeO,     7—10 % МпО; благодаря высокому содержанию Р2O5 этот шлак используют в качестве удобрения.

Видоизменения бессемеровского и томасовского процессов

Достоинства бессемеровского и томасовского процессов — высокая производительность, простота устройства конвертера, отсутствие необходимости применять топливо, малый расход огнеупоров и связанные с этим более низкие, чем при мартеновском и электросталеплавильном процессах, капитальные затраты и расходы по переделу.  Однако обоим процессам был присущ большой недостаток — повышенное со-держание азота в стали (0,010—0,025 %), вызываемое тем, что азот воздушного дутья растворяется в металле. По этой причине бессемеровская и томасовская стали обладают повышенной хрупкостью и склонностью к старению.
Для получения стали с пониженным содержанием азота в 1950—1965 гг. были разработаны и находили промышленное применение способы продувки снизу дутьем, обогащенным кислородом (до 30—40 % 02 в дутье), смесью кислорода и водяного пара в соотношении 1:1 и смесью кислорода и СO2 в соотношении 1:1.

Увеличение содержания кислорода в дутье до 30—40 % (вместо 21 % в воздухе) не решило проблему; выплавляемая сталь содержала 0,006—0,009 % азота, т.е. больше, чем мартеновская. Дальнейшее же увеличение доли кислорода в дутье оказалось неприемлемым, так как вызывало быстрое разрушение футеровки днища из-за его перегрева вблизи фурм вследствие выделения здесь тепла экзотермических реакций окисления составляющих чугуна. При воздушном дутье столь сильного перегрева не было из-за охлаждающего воздействия азота, которого в воздухе больше (79 %), чем в обогащенном дутье.

Способы продувки смесями 02-СO2 и O2—Н2О пар обеспечивали низкое содержание азота в стали (0,001—0,0035 %), но из-за высокой стоимости и сложности не нашли широкого применения.

В период с 1955 по 1975 г. бессемеровский и томасовский процессы и их разновидности были вытеснены кислородно-конвертерными процессами с верхней и нижней подачей дутья.

Понравилась статья? Поделиться с друзьями:
Черная и цветная металлургия на metallolome.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: